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Abstract

The method of series expansion has been developed for the inversion of the X-ray transform of three-dimensional

(3-D) vector fields, and the corresponding vector central-slice theorem derived. The simulation demonstrating the 3-D

reconstruction of the model vector fields is presented.

� 2004 Published by Elsevier Inc.
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1. Introduction

Recent years have given evidence of growing necessity to apply tomography reconstruction techniques

to flow diagnostics. In many physical experiments the number of two-dimensional (2-D) measurements is

usually executed by collecting a line of sight information, which is essentially integral. In case of scalar

objects, the 2-D measured data are the projections of 3-D density. In more complex models, like plasma,

the spectroscopic measurements, for example, can contain both information concerning the distribution

of parameters of scalar and vector (velocity) fields. The majority of works on vector tomography have
been dedicated to the Radon transform [1–4]. Norton [1] have derived the central-slice theorem for

a 2-D vector field and shown that only the solenoidal (divergent-free) component of the field can be

reconstructed from the time-of-flight measurements. Braun and Hauck [2] have shown that usage of
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‘‘longitudinal’’ and ‘‘transversal’’ interaction effect allows one to perform complete reconstruction of a

vector field. Prince [3] has developed the backprojection algorithm for the 3-D vector field and shown

that irrotational and solenoidal components of the field, in principle, can be recovered separately by

using probe measurements.

The method of series expansion for scalar fields has been investigated by several authors. Mijna-
rends [5] has solved the reconstruction problem for 1-D projection data in an object space. The solu-

tion for the 2-D projection data has been for the first time given by Majumdar [6], as well as by

Wang and Granetz [8] for an object space. Pecora [7] has developed the inversion method for 2-D

projection data in Fourier space. Wang [10] has proposed the analytical inversion formula for the

X-ray transform in 3-D space.

In many experiments, the reconstruction problem is hard to be solved since it is often experimentally

impossible to obtain more than a few projections of the object. In this paper, a numerical method is pro-

posed for the inversion of the X-ray transform of 3-D vector fields, which is based on the method of series
expansion, which is often preferred by physicists and is quite appropriate for real experimental

measurements.

The left-hand side of Eq. (2) is obtained as the inner product of the vector field and the unit vector v. In

case of spectroscopic measurements, in the process of plasma experiments, the vector v(n) merely coincides

with the vector n which is determined by the line of observation [11].

The object coordinate system, S 0 = (e01,e
0
2,e

0
3), with the coordinates x 0 = (x 0,y 0,z 0) will, in general, be ro-

tated with respect to the laboratory frame of reference, S = (e1,e2,e3), with the coordinates x = (x,y,z).

The laboratory coordinate system S is assumed to be related to the measurement coordinate system with
the axis z along the line of observation and is fixed throughout the experiment. The rotations are considered

as active transformations, i.e., rotation of a vector (object) in a fixed coordinate frame 1 [12]. The rotation

matrix R(a,b,c) mapping any vector x into a new vector x 0 by the formula
1 In
2 Fo
x0 ¼ Rða; b; cÞx: ð1Þ

The Euler angles (a,b,c) are likewise defined in [13]. The angles b and a are, respectively, the polar and

the azimuth angles of the axis z 0 referred to the system of reference S. For the positive Euler angles (a,b,c)
the rotation matrix is as follows 2
R ¼
cos a cos b cos c� sin a sin c

sin a cos b cos cþ cos a sin c

� sin b cos c

0
B@

�������
� cos a cos b sin c� sin a cos c

� sin a cos b sin cþ cos a cos c

sin b sin c

�������
cos a sin b

sin a sin b

cos b

1
CA;

0 � a < 2p; 0 � b � p; 0 � c < 2p:
The tomographic reconstruction of the 3-D vector field in the paper has been performed in terms of

spherical harmonics from a relatively small number of 2-D data sets. Test examples using objects of some

spherical symmetry and/or band-limited with respect to angular variables show that reconstruction can

work well when small number of directions are available. A band-limited function can be computed exactly

by finite sums of sampled values of this function on the sphere [14].
Below, in Section 2, we first of all discuss the Central Slice Theorem for the vector X-ray transform. Sec-

tion 3 describes the inversion method. The results of the computer simulation are given in Section 4. Some

useful properties of Wigner D-functions employed in the computations are given in Appendix A.
contrast, passive rotation is rotation of the coordinate system.

r the positive angle the rotation appears counterclockwise with respect to an observer looking towards the origin.
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2. The central slice theorem

In this section, the Central Slice Theorem for the vector X-ray transform is derived, and, as the corollary

it is obtained that the irrotational component of the vector field gives no contribution to the path-integral

Eq. (2), leaving only the contribution from the solenoidal part. Although the vector X-ray transform is dif-
ferent from the vector Radon transform in 3-D space, the result obtained is quite similar for both cases

[1,3].

The X-ray transform of the 3-D vector field g(x) is defined as follows:
ðXgÞðx; nÞ � f ðx; nÞ ¼
Z 1

�1
gðxþ tnÞ � vðnÞ dt; x 2 n?: ð2Þ
The vector field g(x) is assumed to be defined on the Schwartz class of rapidly decreasing C1 functions on
R3; gðxÞ 2 SðR3;R3Þ. The vector function v is the one converting the vector field g into a scalar field by the

inner product. As usually, n^ denotes the plane perpendicular to the vector n. When we regard the vector

k2n^ as a two dimensional one in the coordinates of n^, we denote it by k^ for distinction. Taking the 2-D

Fourier transform for both sides of (2) over x-variable, as a result of computations, we obtain the following

formula which is a vector version of the Central Slice Theorem (cf. [15] for the scalar case):
F 2f ðk?; nÞ ¼ vðnÞ � F 3gðkÞ; k 2 n?; ð3Þ

where F 2 and F 3 denote 2-D and 3-D direct Fourier transforms, respectively. According to Helmholtz�s
decomposition theorem [16], any vector field g(x) can, with a suitable regularity, be uniquely written as

the sum of the irrotational and the solenoidal components
g ¼ gi þ gs; gi ¼ ru; gs ¼ r� w; ð4Þ

where u and w are scalar and vector potentials, respectively. The 3-D Fourier transforms of the irrotational

and solenoidal components of g are
F 3gi ¼ ikF 3uðkÞ; F 3gs ¼ ik� F 3wðkÞ: ð5Þ

The formula Eq. (3) can now be rewritten in the form
F 2f ðk?; nÞ ¼ ivðnÞ � k?F 3uðkÞ þ ivðnÞ � ðk� F 3wðkÞÞ; ð6Þ

where k2n^, i.e., the 3-D vector k, lies in the plane n^. If v(n) = n (as we assume from now on) then the first

summand of (6) is zero and, therefore, there is no contribution of the irrotational component to the pro-

jection data. The following equality takes a place
F 2f ðk?; nÞ ¼ n � F 3gsðkÞ; k 2 n?: ð7Þ

As follows from (7), only information on the solenoidal component of the vector field is present in the

experimental data.
3. The inversion method

The main problem of inversion is to choose such a representation of the rotation group that, when the

vector field g(x) is expanded in terms of some basis functions, its X-ray transform is expanded in terms of

the same basis functions. Whereas the solenoidal component of the field can be recovered from integral
measurement data, the scalar potential u and, consequently, the irrotational part gi(x) of the field under

the constraint div g = 0 can be found as a solution of Laplace�s equation with the values of g on the bound-

ary. To wit, the irrotational component can independently be recovered [1].
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Henceforth, due to (7), we will deal only with the solenoidal component gs(x) of any vector field, and for

simplicity we willll use the notation g(x) for gs(x).

Any vector field in its own coordinate system (S 0) is decomposed as follows:
Fig. 1.

coordi
gðx0Þ ¼
X3

i¼1

giðx0Þe0i: ð8Þ
Similarly to (1), the functions gi(x
0) can be represented in the laboratory frame S by using an operator R

which transforms scalar functions from the object coordinate system S 0 to the laboratory frame. Thus, in

the laboratory frameRgiðxÞ, are the functions representing the object (components of the field). Since gi(x
0)

are scalar functions the following equality takes place
RgiðR�1x0Þ ¼ giðx0Þ: ð9Þ

Now choose the rotation so that the line of integration representing the projections (X-ray transform) tak-
ing place in the experiment be directed along the axis z in the laboratory frame. Then, the equation for the

data writes
�gðp; a; b; cÞ ¼
Z
Lðp;a;b;cÞ

gðx0Þ dl0 ¼
X3

i¼1

Z
Lðp;a;b;cÞ

giðx0Þe0i dl0 ¼
X3

i¼1

Z 1

�1
RgiðR�1x0Þni dz; ð10Þ
here ni is ith component of the vector n = (cos a sin b, sin a sin b, cos b).
The Euler angles (a,b,c) and the integration path L(p,a,b,c) are shown in Fig. 1. The variable p is meas-

ured along of the axis x from the origin.

Under general conditions, any scalar function gi(x
0) can be expanded in the series of spherical harmonics

Yl m(h 0,u 0) and hence operator R is specified as follows:
giðx0Þ ¼ RgiðR�1x0Þ ¼
X1
n¼0

X1
l¼0

Xl

m¼�l

Ci
lmnY lmðh0;u0ÞflnðrÞ; ð11Þ
where h 0 and u 0 are polar and azimuthal angles of the point x 0 in an object coordinate system S 0, Ci
lmn are

complex coefficients, the orthogonal polynomials fln(r) is defined below. The spherical harmonics Ylm(h,u)
are given as follows
The integration path L(p,a,b,c) and Euler angles for the X-ray transform. XYZ and X 0Y 0 Z 0 are the laboratory and the object

nate systems, respectively. Integration is always performed along the axis Z with different a, b, c, p = OA.
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Y lmðh;uÞ ¼ ð�1Þm ð2lþ 1Þðl� mÞ!
4pðlþ mÞ!

� �1=2

Pm
l ðcos hÞ expðimuÞ;
where Pm
l ðcos hÞ are associated Legendre functions.

Under rotation, characterized by Euler�s angles (a,b,c), the spherical harmonics Ylm are transformed

according to the formula
Y lmðh0;u0Þ ¼
Xl

m0¼�l

Dl
m0mða; b; cÞY lm0 ðh;uÞ; ð12Þ
where (h 0,u 0) are spherical coordinates in the object coordinate system S 0, whereas (h,u) are the coordinates
in the laboratory system S. Based on the property (12) the components gi(x

0) are rewritten in an invariant

form
giðx0Þ ¼ RgiðR�1x0Þ ¼
X1
n¼0

X1
l¼0

Xl

m¼�l

Xl

m0¼�l

Ci
lmnD

l
m0mða; b; cÞY lm0 ðh;uÞflnðrÞ: ð13Þ
The function �gðp; a; b; cÞ now writes
�gðp; a; b; cÞ ¼
X
l;m;n;i

Ci
lmn

X
m0

Dl
m0mða; b; cÞni

Z 1

�1
Y lm0 ðh;uÞflnðrÞ dz; ð14Þ
or, by an equivalent relation with the real coefficients Ai
lmn;B

i
lmn [9],
�gðp; a; b; cÞ ¼
X1
n¼0

X1
l¼0

Xl

m¼0

X3

i¼1

½Ai
lmnW lmn þ Bi

lmnV lmn�ni; ð15Þ
where the functions Wlmn and Vlmn are, respectively,
W lmn � W lmnðp; a; b; cÞ ¼
Z 1

�1
dzSc

lmðh;uÞflnðrÞ ¼
Xl

k¼0

Wlmkða; b; cÞulknðpÞ; ð16Þ

V lmn � V lmnðp; a; b; cÞ ¼
Z 1

�1
dzSs

lmðh;uÞflnðrÞ ¼
Xl

k¼0

Vlmkða; b; cÞulknðpÞ: ð17Þ
The functions Wlmk and Vlmk are obtained as a result of separation of the Wigner�s D-function and

spherical harmonics Ylm into the real and the imaginary parts.
Wlmkða;b; cÞ ¼ dk½cosðmaþ kcÞdl
mkðbÞ þ ð�1Þk cosðma� kcÞdl

m;�kðbÞ�;
Vlmkða; b; cÞ ¼ dk½sinðmaþ kcÞdl

mkðbÞ þ ð�1Þk sinðma� kcÞdl
m;�kðbÞ�;

d0 ¼ 0:5 and dk ¼ 1 if k 6¼ 0:
The definition and some properties useful for numerical computation of D-functions and functions

dl
mkðbÞ are given in Appendix A.

The real spherical harmonics Sc
lm and Ss

lm are defined as
Sc
lmðh;uÞ ¼

Y lmðh;uÞ þ Y �
lmðh;uÞ

2
; Ss

lmðh;uÞ ¼
Y lmðh;uÞ � Y �

lmðh;uÞ
2i

: ð18Þ
If the orthogonal polynomials fln(r) are chosen to be of the following form:
flnðrÞ ¼ rlð1� r2ÞP ðlþ1=2;1Þ
n ð1� 2r2Þ; ð19Þ
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then the functions ulmn(p) can be represented analytically [9,10]:
Fig. 2.

one), r
ulmnðpÞ ¼
Clmnpmð1� p2Þ3=2P ðm;3=2Þ

ðl�mÞ=2þnð1� 2p2Þ; lþ m ¼ even;

0; lþ m ¼ odd:

(
ð20Þ
The constants Clmn are equal to
Clmn ¼
ð�1Þlðnþ 1Þððl� mÞ=2þ nÞ!fð2lþ 1Þðl� mÞ!ðlþ mÞ!g1=2

2lþ1Cððl� mÞ=2þ nþ 5=2Þððl� mÞ=2Þ!ððlþ mÞ=2Þ!
:

The Jacobi polynomials P ða;bÞ
n ðxÞ, which occurred in (19) and (20) can be evaluated with the aid of Gauss�

hypergeometric function [19]:
P ða;bÞ
n ðxÞ ¼ Cðnþ 1þ aÞ

n!Cð1þ aÞ 2F 1 nþ aþ bþ 1;�n; 1þ a;
1� x
2

� �
: ð21Þ
The series in (21) break off, and polynomials P ða;bÞ
n ðxÞ are calculated efficiently.

For the purpose of numerical confirmation of the fact that formula (10) can be represented by formulas

(15)–(17), we give Fig. 2, which shows two curves of the function �gðp; a; b; cÞ with respect to the variable p

with some fixed values of angles (a,b,c). The computations are performed by formula (10) (thick line) and

by formulas (15)–(17) (thin line). The coincidence of the curves is explicit.

The number of series expansion terms in Eq. (15) is infinite, however, in practical calculations the num-
ber of measured data is finite, therefore the series has to be truncated. Eq. (15) after truncation as below is

solved with respect to the variables Ai
lmn;B

i
lmn by the least squares method [18]. The values Ai

lmn and Bi
lmn are

obtained as a result of minimization of the functional U, the sum of squares of the differences between the

experimental values of �gðp; a; b; cÞ and the computed ones:
The projections �gðp; a;b; cÞ have been computed numerically by the formula (10) (thick line) and by the formulas (15)–(17) (thin

espectively, for the fixed values of the angles (a, b, c).
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U ¼
Z 1

0

dp
Z

dR �gðp; a; b; cÞ �
XL

l¼0

Xl

m¼0

XN
n¼0

X3

i¼1

Ai
lmnW lmn þ Bi

lmnV lmn

� �
ni

( )2

; ð22Þ
where R will henceforth denote the Euler angles (a, b,c), and we also will set dR = sin b db da dc:
Z
dRf ðRÞ ¼

Z 2p

0

da
Z p

0

sin b db
Z 2p

0

dcf ða; b; cÞ:
The equations
oU=oAi
l0m0n0

� �
¼ 0; oU=oBi

l0m0n0
� �

¼ 0; ð23Þ
are linear in Ai
lmn and Bi

lmn for each (l,m,n) and i = 1,2,3 and can be written as follows:
XN
m¼1

AlmX m ¼ Y l: ð24Þ
In actual computations, the column vectors Xm and Yl each have N ¼ 3NðLþ 1Þ2 components, and the

square matrix Alm has N 2
components of which at most ðN þ 1ÞN =2 components are different,
Alm ¼

W i
lmnW

j
l0m0n0 ;

when
l ¼ ðLþ 1Þ2ðði� 1ÞN þ ðn� 1ÞÞ þ l2 þ m;

m ¼ ðLþ 1Þ2ððj� 1ÞN þ ðn0 � 1ÞÞ þ l02 þ m0;

(

W i
lmnV

j
l0m0n0 ;

when
l ¼ ðLþ 1Þ2ðði� 1ÞN þ ðn� 1ÞÞ þ l2 þ m;

m ¼ ðLþ 1Þ2ððj� 1ÞN þ ðn0 � 1ÞÞ þ l02 þ l0 þ m0; m0 6¼ 0;

(

V i
lmnW

j
l0m0n0 ;

when
l ¼ ðLþ 1Þ2ðði� 1ÞN þ ðn� 1ÞÞ þ l2 þ lþ m; m 6¼ 0;

m ¼ ðLþ 1Þ2ððj� 1ÞN þ ðn0 � 1ÞÞ þ l02 þ m0;

(

V i
lmnV

j
l0m0n0 ;

when
l ¼ ðLþ 1Þ2ðði� 1ÞN þ ðn� 1ÞÞ þ l2 þ lþ m; m 6¼ 0;

m ¼ ðLþ 1Þ2ððj� 1ÞN þ ðn0 � 1ÞÞ þ l02 þ l0 þ m0; m0 6¼ 0:

(

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
Here N = max(n) is the maximum index for the radial component, L is the maximum number for the index

l, i, j = 1, 2, 3. The case of i = 1 and j = 1 corresponds to the matrix for reconstruction of the scalar field.

The solution of Eq. (24) gives the required values of the unknowns Ai
lmn;B

i
lmn. Then, after their substitution

into Eqs. (8), (11), the problem is solved.
X m ¼

Ai
lmn;

when m ¼ ðLþ 1Þ2ðði� 1ÞN þ ðn� 1ÞÞ þ l2 þ m;

Bi
lmn;

when m ¼ ðLþ 1Þ2ðði� 1ÞN þ ðn� 1ÞÞ þ l2 þ lþ m; m 6¼ 0;

8>>>><
>>>>:
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Y l ¼

Z1
0

dp
Z

dR�gðp; a; b; cÞW i
l0m0 ;n0 ðp; a; b; cÞ;

when l ¼ ðLþ 1Þ2ðði� 1ÞN þ ðn0 � 1ÞÞ þ l02 þ m0;Z1
0

dp
Z

dR�gðp; a; b; cÞV i
l0m0 ;n0 ðp; a; b; cÞ;

when l ¼ ðLþ 1Þ2ðði� 1ÞN þ ðn0 � 1ÞÞ þ l02 þ l0 þ m0; m0 6¼ 0:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:
4. Computer simulation

To illustrate the method, consider below the two models of the vector reconstruction problem. The first
model is taken in the form (25) with L = 3 and with the following coefficients Ai

lmn and Bi
lmn:
giðx0Þ ¼
XL

l¼0

Xl

m¼0

X1

n¼0

ðAi
lmnS

c
lmðh

0;u0Þ þ Bi
lmnS

s
lmðh

0;u0ÞÞflnðrÞ; i ¼ 1; 2; 3; ð25Þ
1;
�

1;
�

A1
lmn ¼ 0:5; if l;m ¼ 0;

B1
lmn ¼ f�1; if l;m 6¼ 0; A2

lmn ¼ 0:1; if l;m ¼ 0;

B2
lmn ¼ f�0:1; if l;m 6¼ 0; A3

lmn ¼
0:5
0:2; if l;m ¼ 0;

�
B3
lmn ¼ f�0:5; if l;m 6¼ 0:
In the capacity of the second model the solenoidal field (div g(x) = 0) of the following form has been
taken:
gðx0Þ ¼ c1y0z0 exp � r2

2a2

� �
; �c2x0z0 exp � r2

2a2

� �
; c3 exp � r2sin2h

2b2

� �� �
; ð26Þ
where r2 = x 02 + y 02 + z 02, a = 0.3, b = 0.3, c1 = 8.0, c2 = 8.0, c3 = 0.25.
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As the first model is described by the finite number of harmonics (L + 1)2, the second one does contain

an infinite number of spherical harmonics. All reconstructions were performed with the projection data

spoiled by some artificial noise. The noise level was taken to be 5% of the maximum level of measured data

(projections). The sum over l in (25) is restricted by L = 3 for the first model and by L = 5 for the second
one. If the samples over angular variables are approximately equally spaced, the Nyquist principle can be

used to estimate the maximum number of L and the maximum number of expansion harmonics that may be

resolved. If however, this does not take place the Akaike information criterion (AIC) is often used in plasma

diagnostic experiments [20]. In our spherical tokamak experiments large scale motion is considered, so the

value of L is probably not larger than 5.

Sections of the 3-D model vector field and its reconstructions on the planes Z = 0, Y = 0, X = 0 are

shown in Figs. 3–5 for the first and on Figs. 6–8 for the second models, respectively. The reconstruction
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of the models is performed with a number of grid points Na = 5, Nb = 5, Nc = 4, Np = 31 for the variables

(a,b,c) and p, respectively.

In course of rotation of the object�s coordinate system, the integration path L(p,a,b,c) in Eq. (10) stays

always along the axis Z while Y = 0, and X is varying from �1 to 1. Fig. 9 illustrates stability of the iterative

procedure of solving Eq. (24). For the first model with L = 5 only the lower first 36 coefficients

A1
lm0 ¼ 1;A1

000 ¼ 0:5 and B1
lm0 ¼ �1 are taken nonzero, any other coefficients are put zero. The thick line

shows the exact values of Xm, the thin line – computed values of Xm with Na = 5, Nb = 5, Nc = 4, Np = 3,

and the ‘‘– Æ – Æ –’’ line shows the computed values with Na = 8, Nb = 10, Nc = 8, Np = 31. It can readily
be seen that the relative error of reconstruction of the coefficients Ai

lmn and Bi
lmn is quite acceptable and sub-

stantially decreases with an increase in the number of projections.



Fig. 9. Exact values of Xm for the first model with L = 5 are depicted by thick line; the values of Xm are obtained as the solutions of Eq.

(24) with Na = 5, Nb = 5, Nc = 4, Np = 31 and with Na = 8, Nb = 10, Nc = 8, Np = 31 are drawn by the thin line and by the ‘‘– Æ – Æ –’’
line, respectively.
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Fig. 8. Model two: precision (left) and reconstructed (right) vector fields on the plane X = 0.
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5. Conclusion

In this paper, we have investigated the problem of reconstructing a 3-D vector field using the line inte-

grated data. The expansion of components of the vector field into the orthogonal system of spherical har-

monics and then solving the linear system of equations with respect to expansion coefficients is an



A.L. Balandin, Y. Ono / Journal of Computational Physics 202 (2005) 52–64 63
important key to the analysis. This approach allows one to take an easy account of the shadow effect con-

ditioned by the central coils in any spherical tokamak experiments.

In our approach, the matrix Alm is diagonally dominant, what, on the one hand, provides stability of the

algorithm, and on the other, the incomplete diagonality indicates that the components of the vector field

intermix under rotation. In other words, another decomposition of the vector field probably exists.
In three dimensions, the vector potential w in (4) actually, unlike that in the two-dimensional case, when

only one component of the vector potential exists, has three components. So, the vector potential formu-

lation cannot be applied with essential advantage to the 3-D field in contrast to the 2-D case [1,11]. If the

object of reconstruction is known to have some symmetry, which is often the case in spherical tokamak

experiments, the truncation problem in (15) is simplified.
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Appendix A. Some properties of the Wigner D-functions

The matrix DJ
M1M2

ða; b; cÞ is a representation of the group of rotations SO(3) and is usually represented as
a product of three functions, each depending on only one Euler angle (a,b,c):
DJ
M1M2

ða; b; cÞ ¼ e�iM1a dJ
M1M2

ðbÞe�iM2c:
Here angle a(06 a<2p) is the angle of rotation about the initial axis z, b(06 b6p) is the angle of rota-
tion about a new (turned) axis y 0, and c(0 6 c < 2p) is one about a new (turned) axis z 0. Any rotation of the
coordinate system may be performed by successive rotations about coordinate axes z, new y 0 and new z 0 at

the angles (a,b,c), respectively. The real functions dJ
M1M2

ðbÞ have the following explicit form:
dJ
M1M2

ðbÞ ¼ ð�1ÞM1�M2 ½ðJ þM1Þ!ðJ �M1Þ!ðJ þM2Þ!ðJ �M2Þ!�1=2

�
X
k

ð�1Þk ðcos b=2Þ2J�2k�M1þM2ðsin b=2Þ2kþM1�M2

k!ðJ �M1 � kÞ!ðJ þM2 � kÞ!ðM1 �M2 þ kÞ! :
An index k runs through all the integer values for which the factorial arguments are non-negative, i.e.,
maxð0;M2 �M1Þ � k � minðJ �M1; J þM2Þ

(cf. [13]). Useful recurrence formulas for computing dJ

M1M2
ðbÞ can be found in [12]. In [17] a method for

evaluation of DJ
M1M2

ða; b; cÞ for arbitrary arguments from the following relation
DJ
M1M2

ða; b; cÞ ¼
X
m

e�iM1a dJ
M1mðp=2Þ e�imb dJ

mM2ðp=2Þ e�iM2c;
is given; the values dJ
M1M2ðp=2Þ can easily be calculated.
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